
A Brief History of Web Crawlers

Seyed M. Mirtaheri, Mustafa Emre Dinçtürk, Salman Hooshmand,
Gregor V. Bochmann, Guy-Vincent Jourdan

School of Electrical Engineering and Computer Science
University of Ottawa, Ottawa, Ontario, Canada

{staheri,mdinc075, shooshmand}@uottawa.ca, {bochmann,gvj}@eecs.uottawa.ca
Iosif Viorel Onut

Security AppScan R© Enterprise, IBM
770 Palladium Dr, Ottawa, Ontario, Canada

vioonut@ca.ibm.com

Abstract
Web crawlers have a long and interesting his-

tory. Early web crawlers collected statistics about
the web. In addition to collecting statistics about
the web and indexing the applications for search
engines, modern crawlers can be used to perform
accessibility and vulnerability checks on the appli-
cation.

Quick expansion of the web, and the complex-
ity added to web applications have made the pro-
cess of crawling a very challenging one. Through-
out the history of web crawling many researchers
and industrial groups addressed different issues and
challenges that web crawlers face. Different solu-
tions have been proposed to reduce the time and
cost of crawling. Performing an exhaustive crawl is
a challenging question. Additionally, capturing the
model of a modern web application and extracting
data from it automatically is another open question.

What follows is a brief history of different tech-
niques and algorithms used from the early days of
crawling up to the recent days. We introduce cri-
teria to evaluate the relative performance and ob-
jective of web crawlers. Based on these criteria we
plot the evolution of web crawlers.

Copyright c© IBM Canada Ltd., 2013. Permission to copy
is hereby granted provided the original copyright notice is re-
produced in copies made.

1 Introduction
Crawling is the process of exploring web appli-

cations automatically. The web crawler aims at dis-
covering the web pages of a web application by
navigating through the application. This is usually
done by simulating the possible user interactions
considering just the client-side of the application.

As the amount of information on the web has
been increasing drastically, web users increasingly
rely on search engines to find desired data. In
order for search engines to learn about the new
data as it becomes available, the web crawler has
to constantly crawl and update the search engine
database.

1.1 Motivations for Crawling
There are several important motivations for

crawling. The main three motivations are:

• Content indexing for search engines. Every
search engine requires a web crawler to fetch
the data from the web.

• Automated testing and model checking of the
web application

• Automated security testing and vulnerability
assessment. Many web applications use sen-
sitive data and provide critical services. To
address the security concerns for web appli-
cations, many commercial and open-source
automated web application security scanners



have been developed. These tools aim at de-
tecting possible issues, such as security vul-
nerabilities and usability issues, in an auto-
mated and efficient manner [1, 2].

They require a web crawler to discover the
states of the application scanned.

1.2 The Evolution of Web
Crawlers

In the literature on web-crawling, a web crawler
is basically a software that starts from a set of seed
URLs, and downloads all the web pages associated
with these URLs. After fetching a web page asso-
ciated with a URL, the URL is removed from the
working queue. The web crawler then parses the
downloaded page, extracts the linked URLs from
it, and adds new URLs to the list of seed URLs.
This process continues iteratively until all of the
contents reachable from seed URLs are reached.

The traditional definition of a web crawler as-
sumes that all the content of a web application
is reachable through URLs. Soon in the history
of web crawling it became clear that such web
crawlers can not deal with the complexities added
by interactive web applications that rely on the user
input to generate web pages. This scenario often
arises when the web application is an interface to
a database and it relies on user input to retrieve
contents from the database. The new field of Deep
Web-Crawling was born to address this issue.

Availability of powerful client-side web-
browsers, as well as the wide adaptation to
technologies such as HTML5 and AJAX, gave
birth to a new pattern in designing web applica-
tions called Rich Internet Application (RIA). RIAs
move part of the computation from the server to
the client. This new pattern led to complex client
side applications that increased the speed and
interactivity of the application, while reducing the
network traffic per request.

Despite the added values, RIAs introduced some
unique challenges to web crawlers. In a RIA,
user interaction often results in execution of client
side events. Execution of an event in a RIA of-
ten changes the state of the web application on the
client side, which is represented in the form of a
Document Object Model (DOM) [3]. This change
in the state of DOM does not necessarily means
changing the URL. Traditional web crawlers rely

heavily on the URL and changes to the DOM that
do not alter the URL are invisible to them. Al-
though deep web crawling increased the ability of
the web crawlers to retrieve data from web appli-
cations, it fails to address changes to DOM that do
not affect the URL. The new and recent field of RIA
web-crawling attempts to address the problem of
RIA crawling.

1.3 Problem Definition
A web application can be modeled as a directed

graph, and the World Wide Web can be modeled as a
forest of such graphs. The problem of Web crawl-
ing is the problem of discovering all the nodes in
this forest. In the application graph, each node rep-
resents a state of the application and each edge a
transition from one state to another.

As web applications evolved, the definition of
the state of the application evolved as well. In the
context of traditional web applications, states in the
application graph are pages with distinct URLs and
edges are hyperlinks between pages i.e. there ex-
ist an edge between two nodes in the graph if there
exist a link between the two pages. In the context
of deep web crawling, transitions are constructed
based on users input. This is in contrast with hy-
perlink transitions which always redirect the appli-
cation to the same target page. In a deep web appli-
cation, any action that causes submission of a form
is a possible edge in the graph.

In RIAs, the assumption that pages are nodes in
the graph is not valid, since the client side code can
change the application state without changing the
page URL. Therefore nodes here are application
states denoted by their DOM, and edges are not re-
stricted to forms that submit elements, since each
element can communicate with the server and par-
tially update the current state. Edges, in this con-
text, are client side actions (e.g. in JavaScript) as-
signed to DOM elements and can be detected by
web crawler. Unlike the traditional web applica-
tions where jumps to arbitrary states are possible,
in a RIA, the execution of sequence of events from
the current state or from a seed URL is required to
reach a particular state.

The three models can be unified by defining the
state of the application based on the state of the
DOM as well as other parameters such as the page
URL, rather than the URL or the DOM alone. A
hyperlink in a traditional web application does not



Table 1: Different categories of web crawlers
Category Input Application graph components

Traditional Set of seed URLs
Nodes are pages with distinct URL and a directed edge exist
from page p1 to page p2 if there is a hyperlink in page p1 that
points to page p2

Deep
Set of Seed URLs, user
context specific data, do-
main taxonomy

Nodes are pages and a directed edge exists between page p1 to
page p2 if submitting a form in page p1 gets the user to page p2.

RIA A starting page

Nodes are DOM states of the application and a directed edge ex-
ist from DOM d1 to DOM d2 if there is a client-side JavaScript
event, detectable by the web crawler, that if triggered on d1
changes the DOM state to d2

Unified
Model A seed URL

Nodes are calculated based on DOM and the URL. An edge is
a transmission between two states triggered through client side
events. Redirecting the browser is a special client side event.

only change the page URL, but it also changes the
state of the DOM. In this model changing the page
URL can be viewed as a special client side event
that updates the entire DOM. Similarly, submission
of a HTML form in a deep web application leads to
a particular state of DOM once the response comes
back from the server. In both cases the final DOM
states can be used to enumerate the states of the ap-
plication. Table 1 summarizes different categories
of web crawlers.

1.4 Requirements
Several design goals have been considered for

web crawlers. Coverage and freshness are among
the first [4]. Coverage measures the relative num-
ber of pages discovered by the web crawler. Ideally
given enough time the web crawler has to find all
pages and build the complete model of the appli-
cation. This property is referred to as Complete-
ness. Coverage captures the static behaviour of tra-
ditional web applications well. It may fail, how-
ever, to capture the performance of the web crawler
in crawling dynamically created web pages. The
search engine index has to be updated constantly to
reflect changes in web pages created dynamically.
The ability of the web crawler to retrieve latest up-
dates is measured through freshness.

An important and old issue in designing web
crawlers is called politeness [5]. Early web
crawlers had no mechanism to stop them from
bombing a server with many requests. As the result
while crawling a website they could have lunched
an inadvertent Denial of Service(DoS) attack and

exhaust the target server resources to the point that
it would interrupt normal operation of the server.
Politeness was the concept introduced to put a cap
on the number of requests sent to a web-server per
unit of time. A polite web crawler avoids launch-
ing an inadvertent DoS attack on the target server.
Another old problem that web crawlers faced are
traps. Traps are seemingly large set of websites
with arbitrary data that are meant to waste the web
crawler resources. Integration of black-lists al-
lowed web crawlers to avoid traps. Among the
challenges web crawlers faced in the mid 90s was
scalability [6]. Throughout the history of web-
crawling, the exponential growth of the web and its
constantly evolving nature has been hard to match
by web crawlers. In addition to these requirements,
the web crawler’s model of application should be
correct and reflect true content and structure of the
application.

In the context of deep-web crawling Raghavan
and Garcia-Molina [7] suggest two more require-
ments. In this context, Submission efficiency is de-
fined as the ratio of submitted forms leading to re-
sult pages with new data; and Lenient submission
efficiency measures if a form submission is seman-
tically correct (e.g., submitting a company name as
input to a form element that was intended to be an
author name)

In the context of RIA crawling a non-functional
requirement considered by Kamara et al. [8] called
efficiency. Efficiency means discovering valuable
information as soon as possible. For example states
are more important than transitions and should be
found first instead of finding transitions leading to



already known states. This is particularly impor-
tant if the web crawler will perform a partial crawl
rather than a full crawl.

This paper defines web crawling and its require-
ments, and based on the defined model classifies
web crawlers.

A brief history of traditional web crawlers1, deep
web crawlers2, and RIA crawlers3 is presented in
sections II-IV. Based on this brief history and the
model defined, taxonomy of web crawling is then
presented in section V. Section VI concludes the
paper with some open questions and future works
in web crawling.

2 Crawling Traditional Web
Applications

Web crawlers were written as early as 1993.
This year gave birth to four web crawlers: World
Wide Web Wanderer, Jump Station, World Wide
Web Worm [11], and RBSE spider. These four
spiders mainly collected information and statistic
about the web using a set of seed URLs. Early web
crawlers iteratively downloaded URLs and updated
their repository of URLs through the downloaded
web pages.

The next year, 1994, two new web crawlers ap-
peared: WebCrawler and MOMspider. In addi-
tion to collecting stats and data about the state of
the web, these two web crawlers introduced con-
cepts of politeness and black-lists to traditional web
crawlers. WebCrawler is considered to be the first
parallel web crawler by downloading 15 links si-
multaneously. From World Wide Web Worm to We-
bCrawler, the number of indexed pages increased
from 110,000 to 2 million. Shortly after, in the
coming years a few commercial web crawlers be-
came available: Lycos, Infoseek, Excite, AltaVista
and HotBot.

In 1998, Brin and Page [12] tried to address
the issue of scalability by introducing a large scale
web crawler called Google. Google addressed the
problem of scalability in several ways: Firstly it
leveraged many low level optimizations to reduce
disk access time through techniques such as com-
pression and indexing. Secondly, and on a higher

1See Olston and Najork [4] for a survey of traditional web
crawlers.

2See He et al. [9] for a survey of deep web crawlers.
3See Choudhary et al. [10] for a survey of RIA crawlers.

level, Google calculated the probability of a user
visiting a page through an algorithm called PageR-
ank. PageRange calculates the probability of a
user visiting a page by taking into account the
number of links that point to the page as well as
the style of those links. Having this probabil-
ity, Google simulated an arbitrary user and vis-
ited a page as often as the user did. Such ap-
proach optimizes the resources available to the web
crawler by reducing the rate at which the web
crawler visits unattractive pages. Through this
technique, Google achieved high freshness. Archi-
tecturally, Google used a master-slave architecture
with a master server (called URLServer) dispatch-
ing URLs to a set of slave nodes. The slave nodes
retrieve the assigned pages by downloading them
from the web. At its peak, the first implementation
of Google reached 100 page downloads per second.

The issue of scalability was further addressed by
Allan Heydon and Marc Najork in a tool called
Mercator [5] in 1999. Additionally Mercator at-
tempted to address the problem of extendability of
web crawlers. To address extensibility it took ad-
vantage of a modular Java-based framework. This
architecture allowed third-party components to be
integrated into Mercator. To address the problem
of scalability, Mercator tried to solve the problem
of URL-Seen. The URL-Seen problem answers
the question of whether or not a URL was seen
before. This seemingly trivial problem gets very
time-consuming as the size of the URL list grows.
Mercator increased the scalability of URL-Seen by
batch disk checks. In this mode hashes of discov-
ered URLs got stored in RAM. When the size of
these hashes grows beyond a certain limit, the list
was compared against the URLs stored on the disk,
and the list itself on the disk was updated. Us-
ing this technique, the second version of Mercator
crawled 891 million pages. Mercator got integrated
into AltaVista in 2001.

IBM introduced WebFountain [13] in 2001.
WebFountain was a fully distributed web crawler
and its objective was not only to index the web, but
also to create a local copy of it. This local copy
was incremental meaning that a copy of the page
was kept indefinitely on the local space, and this
copy got updated as often as WebFountain visited
the page. In WebFountain, major components such
as the scheduler were distributed and the crawling
was an ongoing process where the local copy of
the web only grew. These features, as well as de-



ployment of efficient technologies such as the Mes-
sage Passing Interface (MPI), made WebFountain
a scalable web crawler with high freshness rate. In
a simulation, WebFountain managed to scale with
a growing web. This simulated web originally had
500 million pages and it grew to twice its size every
400 days.

In 2002, Polybot [14] addressed the problem of
URL-Seen scalability by enhancing the batch disk
check technique. Polybot used Red-Black tree to
keep the URLs and when the tree grows beyond
a certain limit, it was merged with a sorted list in
main memory. Using this data structure to handle
the URL-Seen test, Polybot managed to scan 120
million pages. In the same year, UbiCrawler [15]
dealt with the problem of URL-Seen with a dif-
ferent, more peer-to-peer (P2P), approach. Ubi-
Crawler used consistent hashing to distribute URLs
among web crawler nodes. In this model no cen-
tralized unit calculates whether or not a URL was
seen before, but when a URL is discovered it is
passed to the node responsible to answer the test.
The node responsible to do this calculation is de-
tected by taking the hash of the URL and map it
to the list of nodes. With five 1GHz PCs and fifty
threads, UbiCrawler reached a download rate of 10
million pages per day.

In addition to Polybot and UbiCrawler, in 2002
Tang et al. [16] introduced pSearch. pSearch uses
two algorithms called P2P Vector Space Model
(pVSM) and P2P Latent Semantic Indexing (pLSI)
to crawl the web on a P2P network. VSM and LSI
in turn use vector representation to calculate the
relation between queries and the documents. Ad-
ditionally pSearch took advantage of Distributed
Hash Tables (DHT) routing algorithms to address
scalability.

Two other studies used DHTs over P2P net-
works. In 2003, Li et al. [17] used this technique
to scale up certain tasks such as clustering of con-
tents and bloom filters. In 2004, Loo et al. [18] ad-
dressed the question of scalability of web crawlers
and used the technique to partition URLs among
the crawlers. One of the underlying assumptions in
this work is the availability of high speed commu-
nication medium. The implemented prototype re-
quested 800,000 pages from more than 70,000 web
crawlers in 15 minutes.

In 2005, Exposto et al. [19] augmented partition-
ing of URLs among a set of crawling nodes in a
P2P architecture by taking into account servers ge-

ographical information. Such an augmentation re-
duced the overall time of the crawl by allocating
target servers to a node physically closest to them.

In 2008, an extremely scalable web crawler
called IRLbot ran for 41.27 days on a quad-CPU
AMD Opteron 2.6 GHz server and it crawled over
6.38 billion web pages [20]. IRLbot primarily ad-
dressed the URL-Seen problem by breaking it down
into three sub-problems: CHECK, UPDATE and
CHECK+UPDATE. To address these sub-problems,
IRLbot introduced a framework called Disk Repos-
itory with Update Management (DRUM). DRUM
optimizes disk access by segmenting the disk into
several disk buckets. For each disk bucket, DRUM
also allocates a corresponding bucket on the RAM.
Each URL is mapped to a bucket. At first a URL
was stored in its RAM bucket. Once a bucket on
the RAM is filled, the corresponding disk bucket is
accessed in batch mode. This batch mode access,
as well as the two-stage bucketing system used, al-
lowed DRUM to store a large number of URLs on
the disk such that its performance would not de-
grade as the number of URLs increases.

3 Crawling Deep Web
As server-side programming and scripting lan-

guages, such as PHP and ASP, got momentum,
more and more databases became accessible online
through interacting with a web application. The ap-
plications often delegated creation and generation
of contents to the executable files using Common
Gateway Interface (CGI). In this model, program-
mers often hosted their data on databases and used
HTML forms to query them. Thus a web crawler
can not access all of the contents of a web applica-
tion merely by following hyperlinks and download-
ing their corresponding web page. These contents
are hidden from the web crawler point of view and
thus are referred to as deep web [9].

In 1998, Lawrence and Giles [21] estimated that
80 percent of web contents were hidden in 1998.
Later in 2000, BrightPlanet suggested that the deep
web contents is 500 times larger than what surfaces
through following hyperlinks (referred to as shal-
low web) [22]. The size of the deep web is rapidly
growing as more companies are moving their data
to databases and set up interfaces for the users to
access them [22].

Only a small fraction of the deep web is indexed
by search engines. In 2007, He et al. [9] ran-



domly sampled one million IPs and crawled these
IPs looking for deep webs through HTML form el-
ements. The study also defined a depth factor from
the original seed IP address and constrained itself
to depth of three. Among the sampled IPs, 126
deep web sites were found. These deep websites
had 406 query gateways to 190 databases. Based on
these results with 99 percent confidence interval,
the study estimates that at the time of that writing,
there existed 1, 097, 000 to 1, 419, 000 database
query gateways on the web. The study further esti-
mated that Google and Yahoo search engines each
has visited only 32 percent of the deep web. To
make the matters worse the study also estimated
that 84 percent of the covered objects overlap be-
tween the two search engines, so combining the
discovered objects by the two search engines does
not increase the percentage of the visited deep web
by much.

The second generation of web crawlers took the
deep web into account. Information retrieval from
the deep web meant interacting with HTML forms.
To retrieve information hidden in the deep web, the
web crawler would submit the HTML form many
times, each time filled with a different dataset.
Thus the problem of crawling the deep web got re-
duced to the problem of assigning proper values to
the HTML form fields.

The open and difficult question to answer in de-
signing a deep web crawler is how to meaningfully
assign values to the fields in a query form [23]. As
Barbosa and Freire [23] explain, it is easy to assign
values to fields of certain types such as radio but-
tons. The difficult field to deal with, however, is
text box inputs. Many different proposals tried to
answer this question:

• In 2001, Raghavan and Garcia-Molina [7]
proposed a method to fill up text box inputs
that mostly depend on human output.

• In 2002, Liddle et al. [24] described a method
to detect form elements and fabricate a HTTP
GET and POST request using default values
specified for each field. The proposed algo-
rithm is not fully automated and asks for user
input when required.

• In 2004, Barbosa and Freire [23] proposed
a two phase algorithm to generate textual
queries. The first stage collected a set of data
from the website and used that to associate

weights to keywords. The second phase used a
greedy algorithm to retrieve as much contents
as possible with minimum number of queries.

• In 2005, Ntoulas et al. [25] further advanced
the process by defining three policies for send-
ing queries to the interface: a random policy, a
policy based on the frequency of keywords in
a reference document, and an adaptive policy
that learns from the downloaded pages. Given
four entry points, this study retrieved 90 per-
cent of the deep web with only 100 requests.

• In 2008, Lu et al. [26] map the problem of
maximizing the coverage per number of re-
quests to the problem of set-covering [27] and
uses a classical approach to solve this prob-
lem.

4 Crawling Rich Internet
Applications

Powerful client side browsers and availability of
client-side technologies lead to a shift in computa-
tion from server-side to the client-side. This shift
of computation, also creates contents that are of-
ten hidden from traditional web-crawlers and are
referred to as ”Client-side hidden-web” [28]. In
2013, Behfarshad and Mesbah studies 500 web-
sites and found that 95 percent of the subject web-
sites contain client-side hidden-web, and among
the 95 percent web-sites, 62 percent of the applica-
tion states are considered client-side hidden-web.
Extrapolating these numbers puts almost 59 per-
cent of the web contents at the time of this writing
as client-side hidden-web.

RIA crawling differs from traditional web ap-
plication crawling in several frontiers. Although
limited, there has been some research focusing on
crawling of RIAs. One of the earliest attempts
to crawl RIAs is by Duda et al. [29–31] in 2007.
This work presents a working prototype of a RIA
crawler that indexed RIAs using a Breath-First-
Search algorithm. In 2008, Mesbah et al. [32, 33]
introduced Crawljax a RIA crawler that took the
user-interface into account and used the changes
made to the user interface to direct the crawling
strategy. Crawljax aimed at crawling and taking a
static snapshot of each AJAX state for indexing and
testing. In the same year, Amalfitano et al. [34–37]



addressed automatic testing of RIAs using execu-
tion traces obtained from AJAX applications.

This section surveys different aspects of RIA
crawling. Different strategies can be used to choose
an unexecuted event to execute. Different strategies
effect how early the web crawler finds new states
and the overall time of crawling. Section 4.1 sur-
veys some of the strategies studied in recent years.
Section 4.2 explains different approaches to deter-
mine if two DOMs are equivalent. Section 4.3 sur-
veys parallelism and concurrency for RIA crawl-
ing. Automated testing and ranking algorithms are
explored in Sections 4.4 and 4.5, respectively.

4.1 Crawling Strategy
Until recent years, there has not been much at-

tention on the efficiency requirement, and exist-
ing approaches often use either Breadth-First or a
Depth-First crawling strategy. In 2007, 2008 and
2009, Duda et al. [29–31] used Breadth-First crawl-
ing strategy. As an optimization, the communica-
tion cost was reduced by caching the JavaScript
function calls (together with actual parameters)
that resulted in AJAX requests and the response
received from the server. Crawljax [32, 33] ex-
tracted a model of the application using a varia-
tion of the Depth-First strategy. Its default strategy
only explored a subset of the events in each state.
This strategy explored an event only from the state
where the event was first encountered. The event
was not explored on the subsequently discovered
states. This default strategy may not find all the
states, since executing the same event from differ-
ent states may lead to different states. However,
Crawljax can also be configured to explore all en-
abled events in each state, in that case its strategy
becomes the standard Depth-First crawling strat-
egy.

In 2008, 2009 and 2010, Amalfitano et al. [34–
36] focused on modelling and testing RIAs using
execution traces. The initial work [34] was based
on obtaining execution traces from user-sessions
(a manual method). Once the traces are obtained,
they are analyzed and an FSM model is formed
by grouping together the equivalent user inter-
faces according to an equivalence relation. In later
study [35] introduced CrawlRIA which automat-
ically generated execution traces using a Depth-
First strategy. Starting from the initial state, Crawl-
RIA executed events in a depth-first manner until

a DOM instance that is equivalent to a previously
visited DOM instance was reached. Then the se-
quence of states and events was stored as a trace
in a database, and after a reset, crawling continued
from the initial state to record another trace. These
automatically generated traces were later used to
form an FSM model using the same technique that
is used in [34] for user-generated traces.

In 2011, Benjamin et al. [8] present the initial
version of the first model-based crawling strategy:
the Hypercube strategy. The strategy makes pre-
dictions by initially assuming the model of the ap-
plication to be a hypercube structure. The initial
implementation had performance drawbacks which
prevented the strategy from being practical even
when the number of events in the initial state are
as few as twenty. These limitation were later re-
moved [38].

In 2012, Choudhary et al. [39,40] introduced an-
other model-based strategy called the Menu strat-
egy. This strategy is optimized for the applica-
tions that have the same event always leading to the
same state, irrelevant of the source state [39]. Dinc-
turk et al. [41] introduced a statistical model-based
strategy. This strategy uses statistics to determine
which events have a high probability to lead to a
new stete [38].

In the same year, Peng et al. [42] suggested to
use a greedy strategy. In the greedy strategy if there
is an un-executed event in the current state (i.e. the
state which the web crawler’s DOM structure rep-
resents) the event is executed. If the current state
has no unexplored event, the web crawler trans-
fers to the closest state with an unexecuted event.
Two other variants of the greedy strategy are intro-
duced by the authors as well. In these variations,
instead of the closest state, the most recently dis-
covered state and the state closest to the initial state
are chosen when there is no event to explore in the
current state. They experimented with this strategy
on simple test applications using different combi-
nations of navigation styles to navigate a sequence
of ordered pages. The navigation styles used are
previous and next events, events leading to a few of
the preceding and succeeding pages from the cur-
rent page, as well as the events that lead to the first
and last page. They concluded that all three vari-
ations of the strategy have similar performance in
terms of the total number of event executions to fin-
ish crawling.

In 2013, Milani Fard and Mesbah [43] introduce



FeedEx: a greedy algorithm to partially crawl a
RIAs. FeedEx differs from Peng et al. [42] in that:
Peng et al. [42] use a greedy algorithm in finding
the closest unexecuted event, whereas, FeedEx de-
fines a matrix to measure the impact of an event and
its corresponding state on the crawl. The choices
are then sorted and the most impactful choice will
be executed first. Given enough time, FeedEx will
discover entire graph of the application.

FeedEx defines the impact matrix as a weighted
sum of the following four factors:

• Code coverage impact: how much of the ap-
plication code is being executed.

• Navigational diversity: how diversely the
crawler explores the application graph.

• Page structural diversity: how newly discov-
ered DOMs differ from those already discov-
ered.

• Test model size: the size of the created test
model.

.
In the test cases studied, Milani Fard and Mes-

bah [43] show that FeedEx beats three other strate-
gies of Breadth-First search, Depth-First search,
and random strategy, in the above-mentioned four
factors.

4.2 DOM Equivalence and
Comparison

In the context of traditional web applications it
is trivial to determine whether two states are equal:
compare their URLs. This problem is not as triv-
ial in the context of RIAs. Different chains of
events may lead to the same states with minor dif-
ferences that do not effect the functionality of the
state. Different researchers address this issue dif-
ferently. Duda et al. [29–31] used equality as the
DOM equivalence method. Two states are com-
pared based on “the hash value of the full serial-
ized DOM” [31]. As admitted in [31] this equality
is too strict and may lead to too many states being
produced.

Crawljax [32] used an edit distance (the number
of operations that is needed to change one DOM
instance to the other, the so-called Levenstein dis-
tance) to decide if the current DOM instance corre-
sponds to a different state than the previous one. If

the distance is below a certain threshold the current
DOM instance is considered equivalent to the pre-
vious one. Otherwise, the current DOM instance
is hashed and its hash value is compared to the
hash values of the already discovered states. Since
the notion of distance is not transitive, it is not an
equivalence relation in the mathematical sense. For
this reason, using a distance has the problem of in-
correctly grouping together client-states whose dis-
tance is actually above the given threshold.

In a later paper [33], Crawljax improves its
DOM equivalency: To decide if a new state is
reached, the current DOM instance is compared
with all the previously discovered DOMs using the
mentioned distance heuristic. If the distance of
the current DOM instance from each seen DOM
instance is above the threshold, then the current
DOM is considered as a new state. Although this
approach solves the mentioned problem with the
previous approach, this method may not be as effi-
cient since it requires to store the DOM-trees and
compute the distance of the current DOM to all the
discovered DOMs.

Amalfitano et al. [36] proposed DOM equiva-
lence relations based on comparing the set of el-
ements in the two DOM instances. According to
this method, two DOM instances are equivalent if
both contain the same set of elements. This inclu-
sion is checked based on the indexed paths of the
elements, event types and event handlers of the el-
ements. They have also introduced two variations
of this relation. In the first variation only visible
elements are considered, in the other variation, the
index requirement for the paths is removed.

In 2013, Lo et al. [44] in a tool called Imagen,
consider the problem of transferring a JavaScript
session between two clients. Imagen improves the
definition of client-side state by adding the follow-
ing items:

• JavaScript functions closure: JavaScript func-
tions can be created dynamically, and their
scope is determined at the time of creation.

• JavaScript event listeners: JavaScript allows
the programmer to register event-handlers.

• HTML5 elements: Certain elements such as
Opaque Objects and Stream Resources.

These items are not ordinarily stored in DOM. Im-
agen uses code instrumenting and other techniques
to add the effect of these features to the state of the



application. To the best of our knowledge, Imagen
offers the most powerful definition of a RIA state
at the time of this writing. This definition has not
been used by any web crawler yet, and its effect on
the web crawler performance is an open research
topic.

4.3 Parallel Crawling
To the best of our knowledge, at the time of

this writing only one distributed RIA crawling al-
gorithm exists. Mirtaheri et al. [45] used the
JavaScript events to partition the search space and
crawl a RIA in parallel. Each web crawler, running
on a separate computer, visits all application states,
but only executes a subset of the JavaScript events
in each state. If execution of an event leads to the
discovery of a new state, the information about the
new state is propagated to all the web crawlers.
Together, the web crawlers cover every JavaScript
events in every application states. The proposed
algorithm is implemented and evaluated with 15
computers and a satisfactory speedup is demon-
strated. Apart from this work, two algorithms are
proposed to achieve a degree of concurrency:

• Matter [30], proposed to use multiple web
crawlers on RIAs that use hyperlinks together
with events for navigation. The suggested
method first applies traditional crawling to
find the URLs in the application. After tra-
ditional crawling terminates, the set of dis-
covered URLs are partitioned and assigned to
event-based crawling processes that run in-
dependent of each other using their Breadth-
First strategy. Since each URL is crawled in-
dependently, there is no communication be-
tween the web crawlers.

• Crawljax [33] used multiple threads for speed-
ing up event-based crawling of a single URL
application. The crawling process starts with
a single thread (that uses depth-first strategy).
When a thread discovers a state with more
than one event, new threads are initiated that
will start the exploration from the discovered
state and follow one of the unexplored events
from there.

4.4 Automated Testing4

Automated testing of RIAs is an important as-
pect of RIA crawling. In 2008, Marchetto et
al. [47] used a state-based testing approach based
on a FSM model of the application. The introduced
model construction method used static analysis of
the JavaScript code and dynamic analysis of user
session traces. Abstraction of the DOM states was
used rather than the DOM states directly in order
to reduce the size of the model. This optimiza-
tion may require a certain level of manual interac-
tion to ensure correctness of the algorithm. The in-
troduced model produced test sequences that con-
tained semantically interacting events5. In 2009,
Marchetto and Tonella [48] proposed search-based
test sequence generation using hill-climbing rather
than exhaustively generating all the sequences up
to some maximum length.

In 2009 and 2010, Crawljax introduced three
mechanisms to automate testing of RIAs: Using
invariant-based testing [49], security testing of in-
teractions among web widgets [50], and regression
testing of AJAX applications [50].

In 2010, Amalfitono et al. [35] compared the ef-
fectiveness of methods based on execution traces
(user generated, web crawler generated and combi-
nation of the two) and existing test case reduction
techniques based on measures such as state cov-
erage, transition coverage and detecting JavaScript
faults. In another study [37], authors used
invariant-based testing approach to detect faults
visible on the user-interface (invalid HTML, bro-
ken links, unsatisfied accessibility requirements) in
addition to JavaScript faults (crashes) which may
not be visible on the user-interface, but cause faulty
behaviour.

4.5 Ranking (Importance Met-
ric)

Unlike traditional web application crawling,
there has been a limited amount of research in rank-
ing states and pages in the context of RIA crawling.
In 2007, Frey [31] proposed a ranking mechanism
for the states in RIAs. The proposed mechanism,
called AjaxRank, ordered search results by assign-

4For a detailed study of web application testing trends from
2000 to 2011 see Garousic et al. [46]

5Two events are semantically interacting if their execution
order changes the outcome.



ing an importance value to states. AjaxRank can
be viewed as an adaptation of the PageRank [51].
Similar to PageRank, AjaxRank is connectivity-
based but instead of hyperlinks the transitions are
considered. In the AjaxRank, the initial state of the
URL is given more importance (since it is the only
state reachable from anywhere directly), hence the
states that are closer to the initial state also get
higher ranks.

5 Taxonomy and Evolution
of Web Crawlers

The wide variety of web crawlers available are
designed with different goals in mind. This section
classifies and cross-measures the functionalities of
different web crawlers based on the design crite-
ria introduced in Section 1.4. It also sketches out a
rough architecture of web crawlers as they evolve.
Sections 5.1, 5.2 and 5.3 explain the taxonomy of
traditional, deep, and RIA web crawlers, respec-
tively.

5.1 Traditional Web Crawlers
Figure 1 shows the architecture of a typical tra-

ditional web crawler. In this model Frontier gets
a set of seed URLs. The seed URLs are passed to
a module called Fetcher that retrieves the contents
of the pages associated with the URLs from the
web. These contents are passed to the Link Extrac-
tor. The latter parses the HTML pages and extracts
new links from them. Newly discovered links are
passed to Page Filter and Store Processor. Store
Processor interacts with the database and stores the
discovered links. Page Filter filters URLs that are
not interesting to the web crawler. The URLs are
then passed to URL-Seen module. This module
finds the new URLs that are not retrieved yet and
passes them to Fetcher for retrieval. This loop con-
tinues until all the reachable links are visited.

Table 2 summarizes the design components, de-
sign goals and different techniques used by tradi-
tional web crawlers.

5.2 Deep Web Crawlers
Figure 2 shows the architecture of a typical deep

web crawler. In this model Select Fillable gets
as input set of seed URLs, domain data, and user

specifics. Select Fillable then chooses the HTML
elements to interact with. Domain Finder uses
these data to fill up the HTML forms and passes the
results to Submitter. Submitter submits the form to
the server and retrieves the newly formed page. Re-
sponse Analyser parses the page and, based on the
result, updates the repository; and the process con-
tinues.

Table 3 summarizes the design components, de-
sign goals and different techniques used by deep
web crawlers.

5.3 RIA Web Crawlers
Figure 3 shows the architecture of a typical RIA

web crawler. JS-engine starts a virtual browser and
runs a JavaScript engine. It then retrieves the page
associated with a seed URL and loads it in the vir-
tual browser. The constructed DOM is passed to
the DOM-Seen module to determine if this is the
first time the DOM is seen. If so, the DOM is
passed to Event Extractor to extract the JavaScript
events form it. The events are then passed to the
Strategy module. This module decides which event
to execute. The chosen event is passed to JS-
Engine for further execution. This process contin-
ues until all reachable states are seen.

Table 4 summarizes the design components, de-
sign goals and different techniques used by RIA
web crawlers.

6 Some Open Questions in
Web-Crawling

In this paper, we have surveyed the evolution
of crawlers, namely traditional, Deep and RIA
crawlers. We identified several design goals and
components of each category and developed a tax-
onomy that classifies different cases of crawlers ac-
cordingly. Traditional web crawling and its scala-
bility has been the topic of extensive research. Sim-
ilarly, deep-web crawling was addressed in great
detail. RIA crawling, however, is a new and open
area for research. Some of the open questions in
the field of RIA crawling are the following:

• Model based crawling: The problem of de-
signing an efficient strategy for crawling a
RIA can be mapped to a graph exploration
problem. The objective of the algorithm is to
visit every node at least once in an unknown



Input Frontier

Web

Fetcher

URL-Seen Page Filter

Link Extractor

Store ProcessorRepository

Figure 1: Architecture of a Traditional Web Crawler.

Input Select Fillable Domain Finder Submitter

Repository Response Analyzer Web

Figure 2: Architecture of a Deep Web Crawler.

Input JS-Engine DOM-Seen Event Extractor

StrategyWeb Model

Figure 3: Architecture of a RIA Web Crawler.

Table 2: Taxonomy of Traditional Web Crawlers
Study Component Method Goal
WebCrawler, MOM-
spider [4]

Fetcher, Frontier,
Page filter Parallel downloading of 15 links, robots.txt, Black-list Scalability, Politeness

Google [12] Store processor,
Frontier

Reduce disk access time by compression, PageRank Scalability, Coverage,
Freshness

Mercator [5] URL-Seen Batch disk checks, cache Scalability

WebFountain [13] Storage processor,
Frontier, Fetch

Local copy of the fetched pages, Adaptive download rate, Homogenous
cluster as hardware

Completeness, Freshness,
Scalability

Polybot [14] URL-Seen Red-Black tree to keep the URLs Scalability
UbiCrawler [15] URL-Seen P2P architecture Scalability
pSearch [16] Store processor Distributed Hashing Tables (DHT) Scalability
Exposto et al . [19] Frontier Distributed Hashing Tables (DHT) Scalability
IRLbotpages [20] URL-Seen Access time reduction by disk segmentation Scalability



Table 3: Taxonomy of Deep Web Crawlers
Study Component Method Goal

HiWe [7]

Select fillable, Do-
main Finder, Submit-
ter, Response Ana-
lyst

Partial page layout and visual adjacency, Normalization by stemming
etc, Approximation matching, Manual domain, Ignore submitting small
or incomplete forms, Hash of visually important parts of the page to
detect errors

Lenient submission ef-
ficiency, Submission
efficiency

Liddle et al. [24] Select fillable, Do-
main Finder

Fields with finite set of values, ignores automatic filling of text field,
Stratified Sampling Method (avoid queries biased toward certain fields),
Detection of new forms inside result page, Removal of repeated form
Concatenation of pages connected through navigational elements, Stop
queries by observing pages with repetitive partial results, Detect record
boundaries and computes hash values for each sentence

Lenient submission ef-
ficiency, Submission
efficiency

Barbosa and Freire
[23]

Select fillable,
Domain Finder,
Response Analysis

Single keyword-based queries, Based on collection data associate
weights to keywords and uses greedy algorithms to retrieve as much
contents with minimum number of queries, Considers adding stop-
words to maximize coverage, Issue queries using dummy words to de-
tect error pages

Lenient submission ef-
ficiency, Submission
efficiency

Ntoulas et al. [25] Select fillable, Do-
main Finder

Single-term keyword-based queries, Three policies: random, based on
the frequency of keyword in a corpus, and an Adaptive policy that learn
from the downloaded pages. maximizing the unique returns of each
query

Lenient submission ef-
ficiency, Submission
efficiency

Lu et al. [26] Select fillable, Do-
main Finder

querying textual data sources, Works on sample that represents the orig-
inal data source, Maximizing the coverage

Lenient submission effi-
ciency, Scalability, Submis-
sion efficiency

Table 4: Taxonomy of RIA Web Crawlers
Study Component Method Goal

Duda et al. [29–31] Strategy, JS-Engine,
DOM-Seen

Breadth-First-Search, Caching the JavaScript function calls and results,
Comparing Hash value of the full serialized DOM Completeness, Efficiency

Mesbah et al. [32,33] Strategy, DOM-Seen
Depth-First-Search, Explores an event only once, New threads are ini-
tiated for unexplored events, Comparing Edit distance with all previous
states

Completeness, State Cover-
age Efficiency, Scalability

CrawlRIA [34–37] Strategy, DOM-Seen
Depth-First strategy (Automatically generated using execution traces),
Comparing the set of elements, event types, event handlers in two
DOMs

Completeness

Kamara et al. [8, 52] Strategy Assuming hypercube model for the application, Using Minimum Chain
Decomposition and Minimum Transition Coverage State Coverage Efficiency

M-Crawler [53] Strategy
Menu strategy which categorizes events after first two runs, Events
which always lead to the same/current state has less priority, Using
Rural-Postman solver to explore unexecuted events efficiently

State Coverage Efficiency,
Completeness

Peng et al. [42] Strategy Choose an event from current state then from the closest state State Coverage Efficiency

AjaxRank [31] Strategy, DOM-Seen
The initial state of the URL is given more importance, Similar to PageR-
ank, connectivity-based but instead of hyperlinks the transitions are
considered hash value of the content and structure of the DOM

State Coverage Efficiency

Dincturk et al. [41] Strategy Considers probability of discovering new state by an event and cost of
following the path to event’s state State Coverage Efficiency

Dist-RIA Crawler
[45]

Strategy Uses JavaScript events to partition the search space and run the crawl in
parallel on multiple nodes Scalability

Feedex [43] Strategy Prioritize events based on their possible impact of the DOM, Considers
factors like code coverage, navigational and page structural diversity State Coverage Efficiency



directed graph by minimizing the total sum of
the weights of the edges traversed. The of-
fline version of this problem, where the graph
is known beforehand, is called the Asym-
metric Traveling Salesman Problem (ATSP)
which is NP-Hard. Although there are some
approximation algorithms for different varia-
tions of the unknown graph exploration prob-
lem [54–57], not knowing the graph ahead of
the time is a major obstacle to deploy these
algorithms to crawl RIAs.

• Scalability: Problems such as URL-Seen may
not exist in the context of RIA crawling. How-
ever, a related problem is the State-Seen prob-
lem: If a DOM state was seen before.

• Widget detection: In order to avoid state ex-
plosion, it is crucial to detect independent
parts of the interface in a RIA. This can effect
ranking of different states, too.

• Definition of state in RIA: some HTML5 ele-
ments such as web sockets introduce new chal-
lenges to the web crawlers. Some of the chal-
lenges are addressed by Imagen [44], however
many of these challenges remain open.

In addition, combining different types of crawlers
to build a unified crawler seems another promising
research area.

Acknowledgements
This work is largely supported by the IBM R©

Center for Advanced Studies, the IBM Ottawa Lab
and the Natural Sciences and Engineering Research
Council of Canada (NSERC). A special thank to
Anseok Joo and Di Zou.

Trademarks
IBM, the IBM logo, ibm.com and AppScan are

trademarks or registered trademarks of Interna-
tional Business Machines Corp., registered in many
jurisdictions worldwide. Other product and service
names might be trademarks of IBM or other com-
panies. A current list of IBM trademarks is avail-
able on the Web at “Copyright and trademark infor-
mation” at www.ibm.com/legal/copytrade.shtml.
Java and all Java-based trademarks and logos
are trademarks or registered trademarks of Oracle
and/or its affiliates.

References
[1] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell,

“State of the art: Automated black-box web appli-
cation vulnerability testing,” in Security and Pri-
vacy (SP), 2010 IEEE Symposium on. IEEE, 2010,
pp. 332–345.

[2] A. Doupé, M. Cova, and G. Vigna, “Why johnny
can’t pentest: An analysis of black-box web vul-
nerability scanners,” in Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer,
2010, pp. 111–131.

[3] J. Marini, Document Object Model, 1st ed. New
York, NY, USA: McGraw-Hill, Inc., 2002.

[4] C. Olston and M. Najork, “Web crawling,” Foun-
dations and Trends in Information Retrieval, vol. 4,
no. 3, pp. 175–246, 2010.

[5] A. Heydon and M. Najork, “Mercator: A scalable,
extensible web crawler,” World Wide Web, vol. 2,
pp. 219–229, 1999.

[6] M. Burner, “Crawling towards eternity: Building
an archive of the world wide web,” Web Techniques
Magazine, vol. 2, no. 5, May 1997.

[7] S. Raghavan and H. Garcia-Molina, “Crawling the
hidden web,” in Proceedings of the 27th Interna-
tional Conference on Very Large Data Bases, ser.
VLDB ’01. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2001, pp. 129–138.

[8] K. Benjamin, G. Von Bochmann, M. E. Dincturk,
G.-V. Jourdan, and I. V. Onut, “A strategy for effi-
cient crawling of rich internet applications,” in Pro-
ceedings of the 11th international conference on
Web engineering, ser. ICWE’11. Berlin, Heidel-
berg: Springer-Verlag, 2011, pp. 74–89.

[9] B. He, M. Patel, Z. Zhang, and K. C.-C. Chang,
“Accessing the deep web,” Commun. ACM, vol. 50,
no. 5, pp. 94–101, May 2007.

[10] S. Choudhary, M. E. Dincturk, S. M. Mirtaheri,
A. Moosavi, G. von Bochmann, G.-V. Jourdan, and
I.-V. Onut, “Crawling rich internet applications: the
state of the art.” in CASCON, 2012, pp. 146–160.

[11] O. A. McBryan, “Genvl and wwww: Tools for tam-
ing the web,” in In Proceedings of the First Interna-
tional World Wide Web Conference, 1994, pp. 79–
90.

[12] S. Brin and L. Page, “The anatomy of a large-scale
hypertextual web search engine,” in Proceedings of
the seventh international conference on World Wide
Web 7, ser. WWW7. Amsterdam, The Nether-
lands, The Netherlands: Elsevier Science Publish-
ers B. V., 1998, pp. 107–117.



[13] J. Edwards, K. McCurley, and J. Tomlin, “An adap-
tive model for optimizing performance of an incre-
mental web crawler,” 2001.

[14] V. Shkapenyuk and T. Suel, “Design and imple-
mentation of a high-performance distributed web
crawler,” in In Proc. of the Int. Conf. on Data En-
gineering, 2002, pp. 357–368.

[15] P. Boldi, B. Codenotti, M. Santini, and S. Vi-
gna, “Ubicrawler: A scalable fully distributed web
crawler,” Proc Australian World Wide Web Confer-
ence, vol. 34, no. 8, pp. 711–726, 2002.

[16] C. Tang, Z. Xu, and M. Mahalingam, “psearch: In-
formation retrieval in structured overlays,” 2002.

[17] J. Li, B. Loo, J. Hellerstein, M. Kaashoek,
D. Karger, and R. Morris, “On the feasibility of
peer-to-peer web indexing and search,” Peer-to-
Peer Systems II, pp. 207–215, 2003.

[18] B. T. Loo, S. Krishnamurthy, and O. Cooper, “Dis-
tributed web crawling over dhts,” EECS Depart-
ment, University of California, Berkeley, Tech.
Rep. UCB/CSD-04-1305, 2004.

[19] J. Exposto, J. Macedo, A. Pina, A. Alves, and
J. Rufino, “Geographical partition for distributed
web crawling,” in Proceedings of the 2005 work-
shop on Geographic information retrieval, ser. GIR
’05. New York, NY, USA: ACM, 2005, pp. 55–60.

[20] H. tsang Lee, D. Leonard, X. Wang, and D. Logu-
inov, “Irlbot: Scaling to 6 billion pages and be-
yond,” 2008.

[21] S. Lawrence and C. L. Giles, “Searching the world
wide web,” SCIENCE, vol. 280, no. 5360, pp. 98–
100, 1998.

[22] M. K. Bergman, “The deep web: Surfacing hidden
value,” September 2001.

[23] L. Barbosa and J. Freire, “Siphoning hidden-
web data through keyword-based interfaces,” in In
SBBD, 2004, pp. 309–321.

[24] S. W. Liddle, D. W. Embley, D. T. Scott, and S. H.
Yau1, “Extracting Data behind Web Forms,” Lec-
ture Notes in Computer Science, vol. 2784, pp.
402–413, Jan. 2003.

[25] A. Ntoulas, “Downloading textual hidden web con-
tent through keyword queries,” in In JCDL, 2005,
pp. 100–109.

[26] J. Lu, Y. Wang, J. Liang, J. Chen, and J. Liu,
“An Approach to Deep Web Crawling by Sam-
pling,” Web Intelligence and Intelligent Agent Tech-
nology, IEEE/WIC/ACM International Conference
on, vol. 1, pp. 718–724, 2008.

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein, Introduction to Algorithms, 3rd ed. The
MIT Press, 2009.

[28] Z. Behfarshad and A. Mesbah, “Hidden-web in-
duced by client-side scripting: An empirical study,”
in Proceedings of the International Conference on
Web Engineering (ICWE), ser. Lecture Notes in
Computer Science, vol. 7977. Springer, 2013, pp.
52–67.

[29] C. Duda, G. Frey, D. Kossmann, R. Matter, and
C. Zhou, “Ajax crawl: Making ajax applications
searchable,” in Proceedings of the 2009 IEEE In-
ternational Conference on Data Engineering, ser.
ICDE ’09. Washington, DC, USA: IEEE Com-
puter Society, 2009, pp. 78–89.

[30] R. Matter, “Ajax crawl: Making
ajax applications searchable,” Mas-
ter’s thesis, ETH Zurich, 2008, http://e-
collection.library.ethz.ch/eserv/eth:30709/eth-
30709-01.pdf.

[31] G. Frey, “Indexing ajax web applications,”
Master’s thesis, ETH Zurich, 2007, http://e-
collection.library.ethz.ch/eserv/eth:30111/eth-
30111-01.pdf.

[32] A. Mesbah, E. Bozdag, and A. v. Deursen, “Crawl-
ing ajax by inferring user interface state changes,”
in Proceedings of the 2008 Eighth International
Conference on Web Engineering, ser. ICWE ’08.
Washington, DC, USA: IEEE Computer Society,
2008, pp. 122–134.

[33] A. Mesbah, A. van Deursen, and S. Lenselink,
“Crawling ajax-based web applications through dy-
namic analysis of user interface state changes,”
TWEB, vol. 6, no. 1, p. 3, 2012.

[34] D. Amalfitano, A. R. Fasolino, and P. Tramontana,
“Reverse engineering finite state machines from
rich internet applications,” in Proceedings of the
2008 15th Working Conference on Reverse Engi-
neering, ser. WCRE ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 69–73.

[35] D. Amalfitano, A. Fasolino, and P. Tramontana,
“Rich internet application testing using execution
trace data,” Software Testing Verification and Val-
idation Workshop, IEEE International Conference
on, vol. 0, pp. 274–283, 2010.

[36] D. e. a. Amalfitano, “Experimenting a reverse en-
gineering technique for modelling the behaviour
of rich internet applications,” in Software Mainte-
nance, 2009. ICSM 2009. IEEE International Con-
ference on, sept. 2009, pp. 571 –574.

[37] D. Amalfitano, A. Fasolino, and P. Tramontana,
“Techniques and tools for rich internet applications
testing,” in Web Systems Evolution (WSE), 2010
12th IEEE International Symposium on, sept. 2010,
pp. 63 –72.



[38] M. E. Dincturk, “Model-based crawling - an
approach to design efficient crawling strate-
gies for rich internet applications,” Mas-
ter’s thesis, EECS - University of Ottawa,
2013, http://ssrg.eecs.uottawa.ca/docs/Dincturk
MustafaEmre 2013 thesis.pdf.

[39] S. Choudhary, E. Dincturk, S. Mirtaheri, G.-V.
Jourdan, G. Bochmann, and I. Onut, “Building rich
internet applications models: Example of a better
strategy,” in Web Engineering, ser. Lecture Notes in
Computer Science, F. Daniel, P. Dolog, and Q. Li,
Eds. Springer Berlin Heidelberg, 2013, vol. 7977,
pp. 291–305.

[40] S. Choudhary, “M-crawler: Crawling rich inter-
net applications using menu meta-model,” Mas-
ter’s thesis, EECS - University of Ottawa, 2012,
http://ssrg.site.uottawa.ca/docs/Surya-Thesis.pdf.

[41] M. E. Dincturk, S. Choudhary, G. von Bochmann,
G.-V. Jourdan, and I.-V. Onut, “A statistical ap-
proach for efficient crawling of rich internet appli-
cations,” in ICWE, 2012, pp. 362–369.

[42] Z. Peng, N. He, C. Jiang, Z. Li, L. Xu, Y. Li,
and Y. Ren, “Graph-based ajax crawl: Mining data
from rich internet applications,” in Computer Sci-
ence and Electronics Engineering (ICCSEE), 2012
International Conference on, vol. 3, march 2012,
pp. 590 –594.

[43] A. Milani Fard and A. Mesbah, “Feedback-directed
exploration of web applications to derive test mod-
els,” in Proceedings of the 24th IEEE International
Symposium on Software Reliability Engineering
(ISSRE). IEEE Computer Society, 2013, p. 10
pages.

[44] J. Lo, E. Wohlstadter, and A. Mesbah, “Ima-
gen: Runtime migration of browser sessions for
javascript web applications,” in Proceedings of the
International World Wide Web Conference (WWW).
ACM, 2013, pp. 815–825.

[45] S. M. Mirtaheri, D. Zou, G. V. Bochmann, G.-V.
Jourdan, and I. V. Onut, “Dist-ria crawler: A dis-
tributed crawler for rich internet applications,” in In
Proc. 8TH INTERNATIONAL CONFERENCE ON
P2P, PARALLEL, GRID, CLOUD AND INTERNET
COMPUTING, 2013.

[46] V. Garousi, A. Mesbah, A. Betin Can, and S. Mir-
shokraie, “A systematic mapping study of web ap-
plication testing,” Information and Software Tech-
nology, vol. 55, no. 8, pp. 1374–1396, 2013.

[47] A. Marchetto, P. Tonella, and F. Ricca, “State-
based testing of ajax web applications,” in Pro-
ceedings of the 2008 International Conference on
Software Testing, Verification, and Validation, ser.
ICST ’08. Washington, DC, USA: IEEE Com-
puter Society, 2008, pp. 121–130.

[48] A. Marchetto and P. Tonella, “Search-based test-
ing of ajax web applications,” in Proceedings of the
2009 1st International Symposium on Search Based
Software Engineering, ser. SSBSE ’09. Washing-
ton, DC, USA: IEEE Computer Society, 2009, pp.
3–12.

[49] A. Mesbah and A. van Deursen, “Invariant-based
automatic testing of ajax user interfaces,” in Soft-
ware Engineering, 2009. ICSE 2009. IEEE 31st In-
ternational Conference on, may 2009, pp. 210 –
220.

[50] D. Roest, A. Mesbah, and A. van Deursen, “Re-
gression testing ajax applications: Coping with dy-
namism.” in ICST. IEEE Computer Society, 2010,
pp. 127–136.

[51] L. Page, S. Brin, R. Motwani, and T. Winograd,
“The pagerank citation ranking: Bringing order
to the web,” 1998, standford University, Technical
Report.

[52] K. Benjamin, “A strategy for efficient crawl-
ing of rich internet applications,” Master’s
thesis, EECS - University of Ottawa, 2010,
http://ssrg.eecs.uottawa.ca/docs/Benjamin-
Thesis.pdf.

[53] S. Choudhary, M. E. Dincturk, G. von Bochmann,
G.-V. Jourdan, I.-V. Onut, and P. Ionescu, “Solving
some modeling challenges when testing rich inter-
net applications for security,” in ICST, 2012, pp.
850–857.

[54] N. Megow, K. Mehlhorn, and P. Schweitzer, “On-
line graph exploration: new results on old and new
algorithms,” in Proceedings of the 38th interna-
tional conference on Automata, languages and pro-
gramming - Volume Part II, ser. ICALP’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 478–489.

[55] S. Dobrev, R. Královič, and E. Markou, “Online
graph exploration with advice,” in Structural Infor-
mation and Communication Complexity, ser. Lec-
ture Notes in Computer Science, G. Even and
M. Halldórsson, Eds. Springer Berlin Heidelberg,
2012, vol. 7355, pp. 267–278.

[56] K.-T. Förster and R. Wattenhofer, “Directed graph
exploration,” in Principles of Distributed Systems,
ser. Lecture Notes in Computer Science, R. Bal-
doni, P. Flocchini, and R. Binoy, Eds. Springer
Berlin Heidelberg, 2012, vol. 7702, pp. 151–165.

[57] R. Fleischer, T. Kamphans, R. Klein, E. Langetepe,
and G. Trippen, “Competitive online approxima-
tion of the optimal search ratio,” in In Proc. 12th
Annu. European Sympos. Algorithms, volume 3221
of Lecture Notes Comput. Sci. Springer-Verlag,
2004, pp. 335–346.


